Using the expolinear growth equation for modelling crop growth in year-round cut chrysanthemum.
نویسندگان
چکیده
The aim of this study was to predict crop growth of year-round cut chrysanthemum (Chrysanthemum morifolium Ramat.) based on an empirical model of potential crop growth rate as a function of daily incident photosynthetically active radiation (PAR, MJ m-2 d-1), using generalized estimated parameters of the expolinear growth equation. For development of the model, chrysanthemum crops were grown in four experiments at different plant densities (32, 48, 64 and 80 plants m-2), during different seasons (planting in January, May-June and September) and under different light regimes [natural light, shading to 66 and 43 % of natural light, and supplementary assimilation light (ASS, 40-48 micro mol m-2 s-1)]. The expolinear growth equation as a function of time (EXPOT) or as a function of incident PAR integral (EXPOPAR) effectively described periodically measured total dry mass of shoot (R2 > 0.98). However, growth parameter estimates for the fitted EXPOPAR were more suitable as they were not correlated to each other. Coefficients of EXPOPAR characterized the relative growth rate per incident PAR integral [rm,i (MJ m-2)-1] and light use efficiency (LUE, g MJ-1) at closed canopy. In all four experiments, no interaction effects between treatments on crop growth parameters were found. rm,i and LUE were not different between ASS and natural light treatments, but were increased significantly when light levels were reduced by shading in the summer experiments. There was no consistent effect of plant density on growth parameters. rm,i and LUE showed hyperbolic relationships to average daily incident PAR averaged over 10-d periods after planting (rm,i) or before final harvest (LUE). Based on those relationships, maximum relative growth rate (rm, g g-1 d-1) and maximum crop growth rate (cm, g m-2 d-1) were described successfully by rectangular hyperbolic relationships to daily incident PAR. In model validation, total dry mass of shoot (Wshoot, g m-2) simulated over time was in good agreement with measured ones in three independent experiments, using daily incident PAR and leaf area index as inputs. Based on these results, it is concluded that the expolinear growth equation is a useful tool for quantifying cut chrysanthemum growth parameters and comparing growth parameter values between different treatments, especially when light is the growth-limiting factor. Under controlled environmental conditions the regression model worked satisfactorily, hence the model may be applied as a simple tool for understanding crop growth behaviour under seasonal variation in daily light integral, and for planning cropping systems of year-round cut chrysanthemum. However, further research on leaf area development in cut chrysanthemum is required to advance chrysanthemum crop growth prediction.
منابع مشابه
Fundamental equations for growth in uniform stands of vegetation
Applications of the ‘expolinear’ equation for crop growth described by Goudriaan and Monteith [Goudriaan, J., Monteith, J.L., 1990. Ann. Bot. 66, 695–701] are restricted by the assumption that absolute and specific growth rates are both constant in time. To overcome this constraint, a second-order differential equation is derived that may either be integrated to yield the expolinear equation or...
متن کاملAgricultural crop growth modelling: a tool for dealing with the threat of climate change affecting food security (case study for greenhouse tomato)
Climate change and essentiality of the food security have motived scientists to try innovative approaches, among which, crop growth models can help to predict crop yield. In order to simulate tomato (Solanum lycopersicum) growth, phenological characteristics of a short-life variety of tomato were assessed. Phenologic characteristics included leaf area index (LAI), specific leaf area (S...
متن کاملPlant–Soil Feedback Effects on Growth, Defense and Susceptibility to a Soil-Borne Disease in a Cut Flower Crop: Species and Functional Group Effects
Plants can influence the soil they grow in, and via these changes in the soil they can positively or negatively influence other plants that grow later in this soil, a phenomenon called plant-soil feedback. A fascinating possibility is then to apply positive plant-soil feedback effects in sustainable agriculture to promote plant growth and resistance to pathogens. We grew the cut flower chrysant...
متن کاملEffect of Magnetite Nanoparticles on Vegetative Growth, Physiological Parameters and Iron Uptake in Chrysanthemum (Chrysanthemum morifolium) ‘Salvador’
Despite the increasing rate of nanoparticles (NPS) production and their application in agriculture, few studies have focused on their effect on plant growth. So, the present research was conducted in laboratory and greenhouse conditions. First, superparamagnetic iron oxide nanoparticles (SPIONS) with a humic acid coating (Fe3O4/HA) were synthesized in laboratory...
متن کاملEvaluation of Population Density and the Impact of Aphid (Macrosiphoniella Sanborni) on Morpho-Physiological Traits of Different Chrysanthemum (Chrysanthemum Morifolium) Cultivars
Chrysanthemum aphid (Macrosiphoniella sanborni) is one of the most important pests of chrysanthemum (Chrysanthemum morifolium); while there is little information about the interaction of chrysanthemum and chrysanthemum aphid. In the present study, interaction of different chrysanthemum cultivars and aphid populations was assessed through evaluation of morpho-physiological traits. For this purpo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 92 5 شماره
صفحات -
تاریخ انتشار 2003